2,938 research outputs found

    A Curvature Principle for the interaction between universes

    Full text link
    We propose a Curvature Principle to describe the dynamics of interacting universes in a multi-universe scenario and show, in the context of a simplified model, how interaction drives the cosmological constant of one of the universes toward a vanishingly small value. We also conjecture on how the proposed Curvature Principle suggests a solution for the entropy paradox of a universe where the cosmological constant vanishes.Comment: Essay selected for an honorable mention by the Gravity Research Foundation, 2007. Plain latex, 8 page

    String Theory and Cosmology

    Get PDF
    We discuss the main cosmological implications of considering string-loop effects and a potential for the dilaton in the lowest order string effective action. Our framework is based on the effective model arising from regarding homogeneous and isotropic dilaton, metric and Yang-Mills field configurations. The issues of inflation, entropy crisis and the Polonyi problem as well as the problem of the cosmological constant are discussed.Comment: 7 pages, plain Tex, no figure

    Generalized Chaplygin Gas Model: Dark Energy - Dark Matter Unification and CMBR Constraints

    Full text link
    The generalized Chaplygin gas (GCG) model allows for an unified description of the recent accelerated expansion of the Universe and the evolution of energy density perturbations. This dark energy - dark matter unification is achieved through an exotic background fluid whose equation of state is given by p=−A/ραp = - A/\rho^{\alpha}, where AA is a positive constant and 0<α≀10 < \alpha \le 1. Stringent constraints on the model parameters can be obtained from recent WMAP and BOOMERanG bounds on the locations of the first few peaks and troughs of the Cosmic Microwave Background Radiation (CMBR) power spectrum as well as SNe Ia data.Comment: 9 pages, 2 figures; essay selected for an honorable mention by the Gravity Research Foundation, 200

    Adaptive Cluster Expansion for Inferring Boltzmann Machines with Noisy Data

    Get PDF
    We introduce a procedure to infer the interactions among a set of binary variables, based on their sampled frequencies and pairwise correlations. The algorithm builds the clusters of variables contributing most to the entropy of the inferred Ising model, and rejects the small contributions due to the sampling noise. Our procedure successfully recovers benchmark Ising models even at criticality and in the low temperature phase, and is applied to neurobiological data.Comment: Accepted for publication in Physical Review Letters (2011

    Proximal operators for multi-agent path planning

    Full text link
    We address the problem of planning collision-free paths for multiple agents using optimization methods known as proximal algorithms. Recently this approach was explored in Bento et al. 2013, which demonstrated its ease of parallelization and decentralization, the speed with which the algorithms generate good quality solutions, and its ability to incorporate different proximal operators, each ensuring that paths satisfy a desired property. Unfortunately, the operators derived only apply to paths in 2D and require that any intermediate waypoints we might want agents to follow be preassigned to specific agents, limiting their range of applicability. In this paper we resolve these limitations. We introduce new operators to deal with agents moving in arbitrary dimensions that are faster to compute than their 2D predecessors and we introduce landmarks, space-time positions that are automatically assigned to the set of agents under different optimality criteria. Finally, we report the performance of the new operators in several numerical experiments.Comment: See movie at http://youtu.be/gRnsjd_ocx

    Role of Modified Chaplygin Gas as a Dark Energy Model in Collapsing Spherically Symmetric Cloud

    Full text link
    In this work, gravitational collapse of a spherical cloud, consists of both dark matter and dark energy in the form of modified Chaplygin gas is studied. It is found that dark energy alone in the form of modified Chaplygin gas forms black hole. Also when both components of the fluid are present then the collapse favors the formation of black hole in cases the dark energy dominates over dark matter. The conclusion is totally opposite to the usually known results.Comment: 7 Latex Pages, RexTex style, No figure
    • 

    corecore